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Motivations

Embedding

To fix idea, assume that A is a PDE operator, and consider SISO
ROM

f (s) = b∗(A + s)−1b ≈ fk(s) = b̃∗(Ã + s)−1b̃.

Properties of A are encoded in Ã via data-driven ROM fk . Can we
learn the state variables orthogonal to b and decode those properties
directly from Ã?

Applications: Inverse problems; manifold learning in data science;
spectrally accurate FD PDE discretizaion; material design; etc



Motivations

Embedding and sparse realizations

Conventional structure-preserving ROMs have spectral properties
similar to the one of the full scale problems, i.e., Ã’s spectrum
spectrum or numerical range lay within the complex hull of the
corresponding A’s counterparts.

However, this is not sufficient for embedding in the state space of the
full scale problem.

We shall see how imposing a certain sparsity pattern allows us to
embed Ã onto state space of A via connection with finite-difference
schemes.



Motivations

Mathematicians enlisted to help us:

From left to right: Thomas Joannes Stieltjes, 1856–1894; Yegor
Ivanovich Zolotarev, 1847–1878; Wilhelm Cauer, 1900 – 1945; Mark
Grigorievich Krein, 1907–1989
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Finite-difference embedding of reduced order models Stieltjes-Krein theory and finite-difference Gaussian quadratures

Transfer function of Kac-Krein string

We consider a boundary problem on [0, L] for ODE

−(σux)x + λρu = 0, σux |x=0 = −1, u|x=L = 0, (1)

where 0 < L ≤ ∞, σ(x) and ρ(x) are regular enough positive
functions, λ ∈ C \ R− is the Laplace frequency for parabolic problems
and the square of the Laplace frequency for hyperbolic ones.

Our data is the transfer (a.k.a. NtD map, Weyl, impedance) function

f (λ) = u|x=0 ∈ C.

The transfer function is Stieltjes-Markov function, e.g., for L <∞
with the help of spectral decomposition it can be represented as

f (λ) =
∞∑
i=1

ri
λ+ λi

,

where λi ≥ 0 are eigenvalues of −ρ−1(σux)x and ri > 0 are the
squares of the restrictions of the eigenfunctions at x = 0.



Finite-difference embedding of reduced order models Stieltjes-Krein theory and finite-difference Gaussian quadratures

Rational approximantions of transfer functions

To preserve structure of the original problem consider the ROM via
Stieltjes rational approximants fk ≈ f , that can be written in the
partial fraction form as

f (λ) ≈ fk(λ) =
k∑

i=1

yi
λ+ θi

with non-coinciding poles θi ≥ 0 and residues yi > 0.

fk can be computed as a Padé or multipole Padé approximant of f
with optimal parameters, or using control theory tools =⇒ spectral
(linear or super-linear) convergence!



Finite-difference embedding of reduced order models Stieltjes-Krein theory and finite-difference Gaussian quadratures

Stieltjes inverse problem via continued fraction (S-fraction)

Theorem (Thomas Joannes Stieltjes, 1893)

Any partial fraction fk(λ) with positive residues yi and non-coinciding
poles −θi ∈ R− can be equivalently presented as S-fraction

k∑
i=1

yi
λ+ θi

=
1

ĥ1λ+
1

h1 +
1

ĥ2λ+ . . .
1

hk−1 +
1

ĥkλ+
1

hk

with real positive coefficients ĥi , hi , i = 1, . . . , k via a O(k) direct
algorithm (e.g., Lanczos).



Finite-difference embedding of reduced order models Stieltjes-Krein theory and finite-difference Gaussian quadratures

Finite-difference realization

Wilhelm Cauer and Mark Krein observed that

fk = w1, (2)

where w1 is the Dirichlet component of the finite-difference solution

1

ĥi

(
wi+1 − wi

hi
− wi − wi−1

hi−1

)
− λwi = 0, i = 2, . . . , k,(

w1 − w0

h0

)
= −1, wk+1 = 0. (3)



Finite-difference embedding of reduced order models Stieltjes-Krein theory and finite-difference Gaussian quadratures

Finite-difference Gaussian quadrature rules

Original Krein interpretation of h and ĥ was as stiffnesses and masses
of a string 1.

For σ = ρ(x) = 1 they can be interpreted as respectively primary and
dual steps of staggered three-point finite-difference scheme, as
so-called ‘finite-difference Gaussian quadrature rules’, a.k.a. spectrally
matched or optimal grids .2

1Gantmakher and Krein, 1950. Also known RC or LC interpretations by Cauer or in
circuit synthesis from 1920s

2Dr.&Knizhnerman, SINUM 2000



Finite-difference embedding of reduced order models Imbedding property

Examples of FD Gaussian rules with exponential
convergence, σ = ρ(x) = 1

Padé for L = 1.3

Optimal Zolotarev rational approximation for L =∞.4

Observations: sharp refinement toward 0, grids almost centered, tend
to cover the entire computational domain.

3Dr.&Knizhnerman, SINUM 2000
4Ingerman, Dr., Knizhnerman, Comm. Pure&Appl. Math., 2000



Finite-difference embedding of reduced order models Imbedding property

FD Gaussian rules for 1D wave problem. I



Finite-difference embedding of reduced order models Imbedding property

FD Gaussian rules for 1D wave problem. II



Finite-difference embedding of reduced order models Imbedding property

Optimal discretization of perfectly matched layer (PML)

Perfectly Matched Layers (PMLs) are used for reflectionless
truncation of unbounded computational domains.

In non-reflecting PML waves should decay exponentially =⇒ complex
coordinate transform5

The optimal rational (mod. Zolotarev) approximant yields the FD
Gaussian quadr. on a complex curve.6. Optimal complex rational
approximation is not unique, multiple solutions give the same results.

5Beringer,1994; Chew, Jin, Michielsen, 1997
6Dr.,Guettel, Knizhnerman 2016



Finite-difference embedding of reduced order models Embedding via interpolatory- projection

Rational interpolation via Loewner framework8

Interpolatory projection framework allows to construct rational
interpolants by projecting PDE on the solution snapshots
corresponding to the interpolation points in the form
VTAVũ + λVTVũ = VTb.

We need to compute elements of VTV and VTAV for
V =

(
(A + l1I)−1b, . . . , (A + lnI)−1b

)
Notice that bT (A + li I)

−1bT − bT (A + lj I)
−1b =

(lj − li )
(
(A + li I)

−1b
)T

(A + lj I)
−1b

Hence, elements of VTV are
f (li )−f (lj )

lj−li

Similarly, elements of VTAV are
li f (li )−lj f (lj )

li−lj .

Time-domain counterpart is avaliable. 7

7Dr.,Mamonov, Thaler, Zaslavsky, 2016.
8Mayo, Antoulas, 2007; Antoulas, Beattie, Gugercin 2017



Finite-difference embedding of reduced order models Embedding via interpolatory- projection

”Finite-element ” formulation

Transformation to tri-diagonal form is done via specially ordered
(data-driven!) Cholesky decomposition of mass-matrix
VTV = (R∗R)−1 ≡ pivoted QR of state solutions V = QR.9

Q is a ≈ sparsest basis in the range of V !10 In the figure, functions
ũi are the infinite-dimensional columns of Q.

9Marchenko, Gel’fand,Levitan, 1950s
10Borcea, Dr.,Mamonov, Moskow, Zaslavsky, IP, in press



Finite-difference embedding of reduced order models Embedding via interpolatory- projection

Localization of QR basis and FD Gaussian quadratures



Finite-difference embedding of reduced order models Takeaway

What we learned so far

Finite-difference Gaussian quadrature rules is a network realization of
reduced order models for PDEs.

Allow spectral convergence using at targeted points by optimizing
finite-difference steps.

Embeds ROM back to physical space.

Data-driven transformation from the Loewner to network framework
sparsifies projection basis functions, and make them look like
finite-elements localized at the matching nodes of the finite-difference
Gaussian quadratures.



Finite-difference embedding of reduced order models Applications

Overview of applications

Optimal discretization of perfectly matched layers (PMLs). Will be
touched).11

Discretization of multi-scale wave propagation problems via
matrix-valued networks, not in this talk 12

Direct nonlinear solution of inverse hyperbolic problems via
data-driven reduced order models. We will touch that13

Manifold preserving reduced order graph-Laplacians with application
to cluster analysis, not in this tak.14

11Asvadurov, Dr., Guddati and Knizhnerman. SIAM J. on Num. An. 2003;
Dr.,Guettel and Knizhnerman, SIAM Review, 2016.

12Dr.,Mamonov,Zaslavsky, SIAM MSMS, 2017
13Dr., Mamonov, Zaslavsky, 2016 SIIMS; Dr., Mamonov, Zaslavsky, 2018 SIIMS;

Borcea, Dr., Mamonov, Zaslavsky, 2019, JCP; Borcea, Dr., Mamonov, Zaslavsky, SIIMS,
in press

14Dr.,Mamonov,Zaslavsky, arXive, 2020
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Inverse problems Inverse Sturm-Liouville problem

Continuous Sturm–Liouville inverse problem

We consider a boundary problem on [0, L′] for ODE

−(γux ′)x ′ + λρu = 0, γux ′ |x ′=0 = −1, u|x ′=L = 0, (4)

where 0 < L <∞, σ(x ′) and ρ(x ′) are regular enough positive
functions.

Our data is the transfer function

f (λ) = u|x ′=0 =
∞∑
i=1

ri
λ+ λi

.

It is impossible to find simultaneously γ, ρ and L′ from f .



Inverse problems Inverse Sturm-Liouville problem

Sturm–Liouville inverse problem in travel time coordinates

Coordinate transform dx = dx ′

c(x ′) transforms γ(x ′) to γ(x)
c(x ′) and ρ(x ′)

to ρ(x)c(x ′) without changing f (λ) that’s why we can’t find
simultaneously γ, ρ and L.

By choosing travel time coordinate with c(x) =
√

γ(x ′)
ρ(x ′) (speed of

wave propagation), we obtain Sturm–Liouville equation in divergence
form:

−(σux)x + λσu = 0, σux |x=0 = −1, u|x=L = 0,

where σ =
√
γ(x ′)ρ(x ′) is the impedance, L =

∫ L′

0
dx ′

c(x ′) .

Inverse spectral problem:

f (λ) 7→ σ(x).

Uniqueness, solvability, algorithm - Marchenko, Gel’fand,Levitan,
Krein, 1950s.



Inverse problems Inverse Sturm-Liouville problem

Discrete inverse spectral problem, pole residues matching

Simplest matching condition,

fk(λ) =
k∑

i=1

ri
λ+ θi

=
k∑

i=1

ri
λ+ λi

,

i.e.,
yi = ri , θi = λi , i = 1, . . . , k .

The same Stieltjes inverse problem as discussed earlier:

k∑
i=1

yi
λ+ θi

≡
1

γ̂1λ+
1

γ1 +
1

γ̂2λ+ . . .
1

γk−1 +
1

γ̂kλ+
1

γk

.



Inverse problems Inverse Sturm-Liouville problem

Discrete inverse spectral problem, pole residues matching

But now instead of ĥi and hi we have combined finite-difference
stiffness&masses as γi = hi

σ̂i
γ̂i = hiσi . respectively:

1

γ̂i

(
ui+1 − ui

γi
− ui − ui−1

γi−1

)
− Aui = 0, i = 1, . . . , k ,(

u1 − u0

γ0

)
= −1, uk+1 = 0.

Can we just take some grid steps hi , ĥi , i = 1, . . . , k and define
σ(xi ) ≈ γ̂i

ĥi
, σ(x̂i ) ≈ hi

γi
, where xi+1 = xi + hi , x̂i = x̂i−1 + ĥi?

Depending on the grid, can get different answers for the same γ, γ̂.
So for proper embedding we need to learn the grid.



Inverse problems Inverse Sturm-Liouville problem

Trainable finite-difference inversion

Offline (training) step: Solve the discrete inverse problem with
simulated data a training model for known σ = σ0

15 and find the grid
steps ĥi ,hi .

Online step:

Solve the discrete inverse problem with the measured TM data, find γ̂i ,
γi .
Using ĥi ,hi obtained on the training step and γ̂i , γi from the previous
step, compute σ(xi ) ≈ γ̂i

ĥi
, σ(x̂i ) ≈ hi

γi
.

15E.g., σ0 = 1



Inverse problems Inverse Sturm-Liouville problem

Convergence result

We assume that training and measured (validation) data are computed by
matching first k terms of the partial fraction expansions of corresponding
transfer functions.

Theorem (Borcea et al, CPAM 2005)

Let us (for simplicity) assume, that the Gaussian finite-difference
quadrature is computed for σ(z) ≡ 1. Then ∀ uniformly positive and
bounded σ(z), σ(z) ∈ H3[0, l ] discrete σi and σ̂i converge to the true
σ(z) at the FD nodes iff the FD grid asymptotically close to the optimal
one as m→∞.



Inverse problems Inverse Sturm-Liouville problem

Inversion examples

Figure: Equidistant grid Figure: FD Gaussian rule



Inverse problems Inverse Sturm-Liouville problem

Multidimensional setting

We consider 2D inverse problem for acoustic wave eq. with an array
of m receivers. The shots are fired by moving the transmitter
consequently at the receiver positions, so the data are the elements of
the matrix-valued multi-input/multi-output (MIMO) transfer function

F (λ) = F (λ)∗ ∈ Cm×m.



Inverse problems Inverse Sturm-Liouville problem

Multidimensional generalization of discrete inverse problem

All SISO linear algebra is automatically extended to the MIMO case
by using m ×m matrix valued hi and ĥi instead of scalars, i.e.,
instead of tridiagonal T ∈ Rk×k we will have block-tridiagonal matrix
T ∈ Rmk×mk with m ×m blocks, etc.

Trick: m ×m matrix valued continued fraction

1

ĥ1λ+
1

h1 +
1

ĥ2λ+ . . .
1

hk−1 +
1

ĥkλ+
1

hk

does not rely on commuting of matrix Stieltjes parameters
hi ∈ Rm×m, ĥi ∈ Rm×m.



Inverse problems Inverse Sturm-Liouville problem

Imaging hydraulic fractures

True c Backprojection image I

Important application: acoustic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures



Inverse problems Inverse Sturm-Liouville problem

Imaging hydraulic fractures

True c linearized (RTM) image

Important application: acoustic monitoring of hydraulic fracturing

Multiple thin fractures (down to 1cm in width, here 10cm)

Very high contrasts: c = 4500m/s in the surrounding rock,
c = 1500m/s in the fluid inside fractures

Strong reflections, any linearized image dominated with multiples



Inverse problems Inverse Sturm-Liouville problem

Summary: compress and embed

We consider large-scale multi-input/multi-output problems for
hyperbolic and parabolic linear-time invariant dynamical systems that
can be described by Stieltjes theory.

We approximate these problems by reduced order problems (ROMs)
via Stieltjes continued fractions that can be realized via on sparse
networks with scalar as well as matrix weights, mimicking
discretization of the underlying continuous problems.

The ROM weights are chosen via rigorous learning algorithms, and
can be interpreted as finite-difference grid steps or discretized media
parameters.

Thus compressed by ROM data are imbedded back to physical space
and allow to image PDE coefficients.

Embedding is particularly important for solution of inverse scattering
problems with strong multi-scattering effects (e.g. multiple echoes),
when conventional linearized (Born) inversion is not applicable. More
in Jörn Zimmerling’s poster today.
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Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Quadratic second order problem and Telegrapher System

By adding damping term to the second order problem in travel time
coordinates we obtain quadratic problem

−(σux)x + sγu − s2σu = 0, σux |x=0 = −1, u|x=L = 0,

where s =
√
−λ.

However we will use a more general Telegrapher or transmission line
system, that in first order form can be written as

r(x)u(x , s) + σ(x)
d

dx
v(x , s) = −su(x , s),

1

σ(x)

d

dx
u(x , s) + r̂(x)v(x , s) = −sv(x , s),

v(0) = −1, u(L) = 0, . (5)

The Telegrapher system is equivalent to the quadratic problem when
r = γ(x)

σ(x) and r̂ = 0.



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Passive ROM of dissipative systems.

We define transfer function:

f̃ (s) = u|x=0.

For r , r̂ ≥ 0 the Telegrapher system is port-Hamiltonian, and f̃ is
passive.

Assuming that we can construct passive ROM f̃k(s) ≈ f̃ 16 in the form

f̃k(s)) =
k∑

i=1

yi
s + θi

such that f̃k(s)) = f̃k(s), we want to match f̃k(s) by the transfer
function of the discrete Telegrapher system.

16Questions to Beattie, Gugercin, Mehrmann -:)



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

ROM realization of dissipative systems.

The discrete Telegrapher system with tri-diagonal matrix

rjuj +
vj − vj−1

ĥj/σj
= −suj ,

uj+1 − uj
σ̂jhj

+ r̂jvj = −svj ,

j = 1, . . . , k, (6)

v0 = −1, uk+1 = 0,

where
u1 = f̃k(s).



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Ladder RCL realization

Equivalent realization in terms of the ladder RCL network ≡ discrete
telegrapher system.

The ROM parameters correspond to capacitors Ĥj = ĥj/σj , inductors

Hj = σ̂jhj , primary conductors Rj = ri and dual conductors R̂j = r̂i .
In MIMO setting these parameters, as well as electric variables Uj(t)
and magnetic variables Vj(t) are matrix-valued to account for
“lateral” (relative to the transmission line), cross-range
electromagnetic propagation.



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Extended Stieltjes String:

In the figure we show the spring-mass-damper realization. Consistent
with original Stieltjes string when m̂j = ĥj/σj and kj = 1/(σ̂jhj). The
damping coefficients are given by cj = rj and ĉj = 1/r̂j . Note that if
rj = 0 and r̂j = 0 recovers the original Stieltjes.



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Discrete inverse problem via J-Hermitian Lanczos

Assume weakly damped systems (=(θ 6= 0), k even,
θ2i = θ̄2i+1, y2i = ȳ2i+1, i = 1, . . . , k/2.

2k complex spectral data θ2i y2i , i = 1, . . . , k/2

2k steps of J-symmetric Lanczos 7→

4k real parameters σ̂jhj , ĥj/σj , ri and r̂i , i = 1, . . . , k .



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Finite-difference inversion of dissipative problems, first try

Offline (training) step: Obtain grid hi ,ĥi from training via the same
non-damped problem (r(x) = r̂(x) = 0) as before.

Online step:

Solve the discrete inverse problem via J-Hermitian Lanczos with the
measured damped data f̃ (s), find ĥj/σj , σ̂jhj , ri , r̂i .
Using grid obtained from offline step compute σ(xi ) = σi , σ̂(x̂i ) = σ̂i ,
r(x̂i ) = ri , r̂(xi ) = r̂i .



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Inversion results, first try

Reconstruction of impedance σ(x) Reconstruction of losses r(x) and r̂(x)

σ is as good as for the non damped problem.
However ri does not match r(x) and r̂i even negative for this passive
problem, i.e.,the ladder realization is not in port-Hamiltonian form,
counterintuitively. There are no positivity results as in the Stieltjes
case. Known artifact in network synthesis.



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Need one more stretching

Let us consider frequency dependent stretching

dx =
dx ′′

1 + λ(x ′′)
s

.

In the Fourier domain when s is imaginary, this transform becomes
famous non-reflective complex PML stretching.

In new coordinates (omitting lower order term O(‖λ‖s ).

[r(x ′′)−λ(x ′′)]u(x ′′, s) + σ(x ′′)
d

dx ′′
v(x ′′, s) = −su(x ′′, s),

1

σ(x ′′)

d

dx ′′
u(x ′′, s) + [r̂(x ′′)−λ(x ′′)]v(x ′′, s) = −sv(x ′′, s). (7)



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Inversion results constrained by PML stretching.

Reconstruction of impedance σ(x) Reconstruction of losses r(x) and r̂(x)

In the classical Sturm-Liouville problem we could not find two
coefficients simultaneously and used travel the time transform to get
rid of one. Similarly, here we can not find both r and r̂ , need to do
the same, i.e., use prior. Here it is triviality of dual losses
[r̂(x ′′)− λ(x ′′)] = 0, that yields primary loss ≈ [r̂(x ′′) + r(x ′′)].



Beyond Stieltjes theory: Extension to Dissipative System Discrete Telegrapher System

Inversion results constrained by PML stretching.

Assumption of model independent grid becomes inaccurate for strong
damping due to neglected O(‖λ‖s ) term. Need to train grid for
damped problems, work in progress.
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Conclusions

Summary: compress, transform, stretch and embed

We approximate transfer functions by data-driven ROMs that can be
realized via on sparse networks with scalar as well as matrix weights,
mimicking discretization of the underlying continuous problems.

The ROM weights are chosen via rigorous learning algorithms, and
can be interpreted as finite-difference grid steps or discretized media
parameters, thus embedding data-driven ROMs back to physical
space.

Extending invariant coordinate stretching from continuous to discrete
settings is a key.

Applications to inverse problems, PDE discretization etc.



Conclusions

To do:

Nonlinear problems (known connection of Krein theory with and
nonlinear PDEs); MIMO dissipative problems; optimal sponge layers
for anisotropic wave problems; cloaking design; graph-convolution NN.

You are welcome to our team!
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